Experimental Observation of Oceanic Forced Convection

Max Coppin, Bruno Deremble, Joel Sommeria, Eletta Negretti

International Conference on Geophysical and Astrophysical Fluid Dynamics

25 June 2025

• Wind-driven surface dynamics • With/without rotation

• Experimental Mixed layer on Coriolis Plateform • Apparatus

- Vertical Structure of Entrainment • Qualitative description
- Experimental results
 - Validation of the $k \epsilon$ turbulent model closure 0

Forced Convection: Wind-driven circulation

Figure from GFDL, NOOA

Figure from Von Storch and Zwiers, 1999

Forced Convection: Wind-driven circulation

Figure from GFDL, NOOA

Figure from Von Storch and Zwiers, 1999

Mixed Layer

‡ Entrainment Layer

Stratified Layer

Surface friction

$$\tau = C_d (U_s - U_a) \langle \mathbf{U_s} - \mathbf{U_a} \rangle$$
$$= \overline{u'_j w'} + \nu \partial_z u_j = u_*^2$$

Mixed Layer

‡ Entrainment Layer

Stratified Layer

Surface friction

$$\tau = C_d (U_s - U_a) \langle \mathbf{U_s} - \mathbf{U_a} \rangle$$
$$= \overline{u'_j w'} + \nu \partial_z u_j = u_*^2$$

- Mixed Layer
- **‡** Entrainment Layer

Stratified Layer

Mixed Layer growth $h(t) \propto t^{1/2}$

- Monin–Obukhov (1954)
- Kato & Phillips (1969)
- Pollard et al., (1973)

*Coppin, Deremble and Sommeria, submitted, 2025

Mixed Layer

‡ Entrainment Layer

Stratified Layer

Surface friction

$$\tau = C_d (U_s - U_a) \langle \mathbf{U_s} - \mathbf{U_a} \rangle$$

$$= \overline{u'_j w'} + \nu \partial_z u_j = u_*^2$$

In rotating frame* Inertial oscillations triggered Velocity profil - Ekman Spiral Different deepening rate

Long term deepening with rotation

• Isolate the inertial oscillation / Ekman-type velocity

Deepening rate in rotation $h(t) \propto t^{1/4}$

Long term deepening with rotation

• Isolate the inertial oscillation / Ekman-type velocity

Deepening rate in rotation $h(t) \propto t^{1/4}$

Confrontation to numerical model

1D Turbulent model closure $(k - \epsilon)$

Two prognostic equations:

- Turbulent kinetic energy
- Dissipation

*Coppin, Deremble and Sommeria, submitted to GAFD, 2025

Long term deepening with rotation

• Isolate the inertial oscillation / Ekman-type velocity

Deepening rate in rotation $h(t) \propto t^{1/4}$

Confrontation to numerical model

1D Turbulent model closure $(k - \epsilon)$

Two prognostic equations:

- Turbulent kinetic energy
- Dissipation

*Coppin, Deremble and Sommeria, submitted to GAFD, 2025

Long term deepening with rotation

• Isolate the inertial oscillation / Ekman-type velocity

Deepening rate in rotation $h(t) \propto t^{1/4}$

Confrontation to numerical model

1D Turbulent model closure $(k - \epsilon)$

Two prognostic equations:

- Turbulent kinetic energy
- Dissipation

*Coppin, Deremble and Sommeria, submitted to GAFD, 2025

- Representation of the mean dynamics
- Representation of the turbulence 3.

Experimental Ocean Mixed layer on Coriolis Plateform

Upside down configuration

Experimental Ocean Mixed layer on Coriolis Plateform

Experimental Ocean Mixed layer on Coriolis Plateform

Vertical Structure of Entrainment

Vertical Structure of Entrainment

Vertical Structure of Entrainment

Erosion of the stratification

Velocity profile

Temperature profile

Tracer Mixing

Velocity profile

Temperature profile

Observation constraints - Camera cover only 14 first cm

Tracer Mixing

Velocity profile

Observation constraints

- Camera cover only 14 first cm

Spin-up constraints

- Conservation of the angular momentum (diffusion in the interior)

Temperature profile

Tracer Mixing

Velocity profile

Observation constraints

- Camera cover only 14 first cm

Spin-up constraints

- Conservation of the angular momentum (diffusion in the interior)

Geometrical constraints

- Secondary circulation triggered
- Blocking of the inertial Oscillations

Validation of the $k - \epsilon$ representation of Ekman layer

*Note that the velocity and the thermal measurement are not at the same radius

Validation of the $k - \epsilon$ representation of Ekman layer

*Note that the velocity and the thermal measurement are not at the same radius

Validation of the $k - \epsilon$ representation of the turbulent flux

Take -Home Messages

Validation of the $k - \epsilon$ turbulent model closure for frictionally driven entrainment

- The mean flow is correctly simulated
- The erosion of the density is consistent with the experiment
- The shear mechanisms are well represented in case of an turbulent Ekman case -

Experimental validation of our development

- Growth of the Wind driven mixed layer at long time at a rate $h(t) \propto t^{1/4}$

Future Works

- Experimental Data base to test other turbulent moments closure - New experimental campaign (Pr effect (salt) - higher stratification)

Next step : Free / Mixed Convection

- Heated floor [290-353] kW
- Inner cylinder (5m)
- Temperature probes
 - 3 Vertical profilers
 - 2 Fixed probes (z = 0; 12cm)
- Vertical laser sheet (30x25)cm
 - PIV Stereo
- Horizontal laser sheet (3x4)m
 - PIV (z = 10cm)
 - PIV in volume (multi- layer)
- IR camera (3x4)m

Longer time behavior of the ML: Slab model (Pollard et al, 1973)

• <u>Uniform moving layer:</u>

<u>Potential energy:</u> (from geometrical considerations)

$$E_{pot} = -\int_{-H}^{0} bz dz = -\int_{-H}^{-h} N_0^2 z^2 dz + N_0^2 \frac{h}{2} \int_{-h}^{0} z dz = N_0^2 \left[\frac{h^3 - H^3}{3} - \frac{h^3}{4}\right]$$

<u>Kinetic energy</u>: (Since $E_{kin} = E_{slab}/h$) $\frac{dE_{kin}}{dt} = \frac{dE_{slab}}{h\,dt} - \frac{dh}{h^2\,dt} E_{slab}$

• Equation for energy:

$$\frac{dE_{kin}}{dt} + \frac{dE_{pot}}{dt} = u_*^2 \langle u \rangle /h \longrightarrow -E_{slab} \frac{dh}{h^2 dt} + \frac{dE_{pot}}{dt} = 0$$

$$\left[-\frac{u_*^4}{h^2 f^2} (1 - \cos ft) + N_0^2 \frac{h^2}{4} \right] \frac{dh}{dt} = 0 \longrightarrow \frac{dh}{dt} = 0 \quad \text{or} \quad h^4 = \frac{4u_*^4}{f^2 N_0^2} (1 - \cos ft) + N_0^2 \frac{h^2}{4} = 0$$

Longer time behavior of the ML: Extended Slab model

- <u>Slab energy:</u> ullet
- Potential energy: ullet

$$egin{aligned} rac{dE_{slab}}{dt} &= u_*^2 \; \langle u
angle \ E_{pot} &= \; N_0^2 [rac{h^3 - H^3}{3} - rac{h^3}{4}] \end{aligned}$$

Kinetic energy: ullet

$$E_{kin} = E_{slab}/h + u_*^2 \tilde{E}_{(h)}$$

Exact equation for energy: ullet

• Residual terms:
$$\mathscr{R} \simeq m_p \frac{u_*^4}{hf}$$

 $\mathcal R$ is a fraction m_p of the turbulent kinetic energy production in the entrainment layer

 $\tilde{E}_{(h)}$ expresses the kinetic energy associated with the deviation of the velocity from the uniform slab velocity.

$$ilde{E} = rac{1}{2u_*^2} \int (\mathbf{u} - rac{\langle \mathbf{u}
angle}{h})^2 dz = rac{1}{u_*^2} \left[E_{kin} - rac{u_*^4}{f^2 h} (1 - cos(ft))
ight]$$

$$= 0$$

$$= \frac{2}{L} \int \frac{dh}{dt} = \underbrace{\left(\underbrace{u_{(z=0,t)} - \frac{\langle u \rangle}{h}}_{\text{EXTRA PROD}} - \underbrace{\frac{\mathcal{E}}{u_{*}^{2}}}_{\text{DISSIPATION}} + \underbrace{\frac{d}{dt}\tilde{E}}_{\text{DEVIATION}} + \underbrace{\frac{d}{dt}\tilde{E}_{turb}}_{\text{IMBALANCE}} \right)$$

$$Consistant with scaling from the scaling from the scaling from the scaling from the scale of the s$$

Longer time behavior of the ML: Entrainment layer model

• Considering a fully mixed layer and an entrainment layer h_e

Mixing occurs only in the entrainement layer \longrightarrow Marginal stability

Buoyancy drop $\frac{\partial b}{\partial z} \simeq N_0^2 h / (2h_e)$

Velocity drop (Averaged over T_f) $(\partial u/\partial z)^2 \simeq 2u_*^4/(f^2h_e^2)$

• Relation Between active/entrainment layer thickness:

$$\frac{h_e}{h} = 4Ri_{st} \frac{u_*^4}{h^4 N_0^2 f^2}$$

• Local Buoyancy: $N_e^2 = N_0^2 h/(2h_e)$

• <u>Turbulent Viscosity:</u> (From dimensional argument)

$$\nu_t \simeq u_*^2 / N_e \simeq 2\sqrt{2}R i_{st}^{1/2} \frac{u_*^4}{h^2 N_0^2 f}$$

• <u>TKE Production</u>: (integrated over the layer) $< P >_e \simeq \nu_t u^2 / h_e$

 $dE_p/dt \propto \frac{u_*^4}{hf}m_p < P >_e$

 $u^2 \simeq 2u_*^4/(f^2h^2)$

• <u>Mixing efficiency</u>

Build upon Kato-Phillips experiments

- Fine control over the rotation
- Larger scale (More turbulent / smaller curvature)

Kato, H., Phillips, O.M., 1969. On the penetration of a turbulent layer into stratified fluid. Journal of Fluid Mechanics 37, 643-655

FIGURE 1. The experimental apparatus.

Kato - Philips 1969:

- Impulsive rotation of the upper screen
- Stratified in salt

12/XX

Seminal Experiments

FIGURE 1. The experimental apparatus.

Kato - Philips 1969

Kato, H., Phillips, O.M., 1969. On the penetration of a turbulent layer into stratified fluid. Journal of Fluid Mechanics 37, 643-655

- Mixed layer deepening rate : $h \sim t^{1/3}$
- Entrainment law : $E(Ri) = \frac{dh/dt}{u_*} = 2.5 Ri^{-1}$

- They did not considered rotational effects
- The torque applied was tuned « by hand »
- No direct measurement of the density
- No direct measurement of the velocity

Coriolis Platform

- Diameter: 13 m
- Weight : 350 Tones at full load
- Maximum Speed: 6 rpm
- Max water height: 1 m
- Volume: $132 m^3$
- **_** Rossby Number
- **_** Froude Number : $Fr = \frac{U}{NL}$
- Reynold Number: $Re = \frac{UL}{M}$

 $Ro = \frac{U}{fL}$ ${\cal V}$

Forced Convection Experiment: Apparatus

- Acceleration of rotation (Spin-Up)
- Temperature stratification
- Temperature probes 3 Vertical profilers _
- Vertical laser sheet (30x25)cm
 - PIV Stereo (2D 3 components)

Control parameters

Friction : U_*

Rotation : f